

Technical eXchange on AIS via Satellite

Dr. Dino Lorenzini

Mr. Mark Kanawati

August 19, 2009

3554 Chain Bridge Road Suite 103 Fairfax, Virginia 22030 703-273-7010 www.spacequest.com

SpaceQuest, Ltd.

www.spacequest.com

Dnepr Space Head

- Founded 1994 in Fairfax, Virginia
- Focused on microsatellite technologies. (40 spacecrafts to date)
- Built and launched Microsats for LatinSat, Aprize, AMSAT, others.
- Provides Microsat subsystems to NASA, Canadian Space Agency, US Air Force, US Navy, US Aerospace Corporations, Universities, and Foreign Space Agencies.
- Developed all avionics & software for Bigelow Aerospace.
- Conducted many component flight qualifications programs.

AprizeSat-3

AprizeSats-3 and 4

AprizeSat-4

TEXAS II Presentation

- In 2007 SpaceQuest placed an AIS transponder in orbit.
- Brought AIS signal from space to Earth via S-Band analog downlink.
- Briefed results of signal analysis at TEXAS II Conference.
- Learned what was needed to construct an effective AIS decoder for space.

Update from TEXAS II Conference

During the past 12 months SpaceQuest:

- Designed and developed advanced AIS hardware and flight software.
- Built and tested three space-qualified AIS satellites in 10-months.
- Launched two AIS spacecraft on July 29th (AprizeSats 3 & 4).
- AprizeSat-5 is a ground-based software development test bed.
- Commissioned both satellites autonomously during the first orbit, and began collecting AIS data globally.
- Contacted both satellites from our ground station in Fairfax, Virginia during the first visible pass 7-hours after launch.
- Downloaded and analyzed AIS & telemetry data using both UHF and S-Bands.

Note: These activities were completed without any outside funding.

SpaceQuest Microsatellite Bus

Mission: M2M Data with auxiliary AIS payload

- 13 kg, 25 cm cubes
- 10+ years orbital lifetime
- Low-cost, high performance
- Inexpensive piggyback launch
- Autonomous operation
- Store-and-Forward Data Collection
- Global AIS Receivers

Aprize satellites on Dnepr Space Head Module

Satellite Development Schedule

Mar 2008	Sign launch contract with Kosmotras
Sep 2008	Start construction of spacecraft components
Mar 2009	Complete Aprize Flatsat
May 2009	Assemble flight trays for AprizeSat-3 and 4
June 2009	Integrate Flight Trays and perform functional tests
July 2009	Mount solar panes, perform thermal cycle and vacuum tests
July 05, 09	Transport spacecraft to Baikonur Cosmodrome
July 15, 09	Prepare satellites at launch complex & mount on space head
July 17, 09	Integrate primary spacecraft, close fairing and move to launch silo
July 29, 09	Launch satellites and start collecting AIS messages
July 30, 09	Download AIS data and telemetry from both spacecraft

AprizeSat Construction & Launch Integration

AprizeSat-3 Without wiring Harness

AS-3 and AS-4 on Launch Platform

Dnepr Space Head Module Encapsulation

July 16, 2009; Baikonur, Kazakhstan

SpaceQuest's AIS Payloads

Flight Computer Tray

- Spacecraft Flight Computer
- ARM-7 µProcessor
- ADC/DAC Interface,
- Power PC FPGA running LINUX

AIS Experiment Tray

- Two fixed Channel AIS Receivers
- Agile AIS Receiver
- Dual-Channel Downconverter
- Input-Output Switching Matrix
- GPS Receiver

AIS Payload Capabilities

AIS Payloads:

- 2 AIS monopole antennas
- 2 dual-channel AIS receivers with -125 dBm sensitivity
- 1 frequency-agile AIS receiver with -120 dBm sensitivity
- 1 frequency-agile 1-Watt S-Band transmitter up to 500 Kbps
- 2 UHF frequency-agile, 2 to 4 Watt transmitters up to 38.8 Kbps
- 2 independent AIS µprocessor recorders with 5GB of data storage
- 1 dual-channel down-converter with mixing and converting to various IF's or baseband
- 1 audio switching matrix to switch any input to any output with gain & filter controls
- 1 14-Channel GPS receiver for precise location and time

AprizeSats also contain:

- Four M2M Receivers and Two UHF Transmitters.
- Several SpaceQuest components for space qualification.

AIS Operating Modes

Processing Modes:

- Digitize and store both AIS Channels using the ARM-7 or Power PC.
- Decode AIS signals in real-time or post-process later.
- Transpond raw analog signals or download digitized data using UHF or S-Band.
- Upload new processing algorithms as required.

Download Modes:

- Real-Time or Store-and-Forward
- Analog or Digital Data
- Raw AIS Signals or Decoded Data
- Download AIS data using:
 - High-speed UHF transmitter, or
 - S-Band transmitter up to 500 Kbps

Simple Block Diagram of AIS Payload

Functional Capabilities of AIS Payloads

- Receive and transpond both AIS signals in <u>real time</u> via UHF or S-Band downlinks
- Receive, digitize and store AIS signals from anywhere on Earth
- Convert digital data to analog and transmit via UHF or S-Band
- Decode both AIS channels in real time for on-board storage or real-time transmit
- Vary sampling rates, filtering and RF gains on board the satellite
- Perform worldwide spectrum survey of AIS frequencies and amplitude levels
- Use AIS data from space to develop and test new AIS algorithms
- Upload new AIS firmware to satellite data processors in space
- Sufficient power to operate AIS receivers and data processor continuously
- Download analog or digital AIS data to many ground stations around the world
- UHF or S-Band transmitter can operate for 15minutes or more on every orbit

Spectral Plot of Wideband Analog Signal in AIS Bands

AIS analog signals received using NRL S-Band antenna at Blossom Point, MD.

AIS Signal Structure from Space

Some Early Results

Initial AIS Operations:

- AprizeSat-3 and 4 were commissioned 1 hour after separation.
- Both AIS payloads were activated and began collecting data on their second orbit.
- Over 200,000 AIS transmissions were captured and decoded in the first 160 minutes.
- The average AIS data collection rate for the first 1½ orbits was 20 reading/second.

Follow-up AIS Activities:

- <u>Analog transponder mode:</u> Received two-channel AIS signal; download on S-Band.
- <u>Digital storage mode:</u> Digitize and store AIS raw data on-board; download on UHF.
- Receive and store: Receive, process, decode and store; download later on UHF.

On-board Processing:

- Search for preamble and flags by correlating with known training sequence.
- Identify AIS signal frequency and time delay.
- Demodulate signal coherently and capture AIS data.

FPGA Demodulator

• Use multiple correlation receivers to detect preamble frequency and timing

• Demodulate coherently to increase ability to detect overlapping packets

Frequency and Timing Offsets Example

First North-South Orbit of AprizeSats

July 29, 2009

200,000 Messages In 160 Minutes 2 Channels

2 Satellites

Close Up of the Mediterranean Sea (First Orbit)

Atlantic Ocean

Indian Ocean

Pacific Ocean

Ship Traffic Density Model Vs AIS Measurements

North America

8/19/2009

View over the North Pole

Two-Minutes of AIS Data - South Africa

Yellow = AprizeSat-3

Green = AprizeSat-4

AIS Message Reception Rate

Comparison of AIS Messages from New Orleans Harbor

Mississippi River in New_Orleans

3-minute flyby of AprizeSat-3 August 11, 2009

Port Vision (103 unique ships)

SpaceQuest (25 unique ships)

25/103 = 24.3%

Aprize Satellites Cover a Much Broader Region

pertvision

AIS data from Port Vision

Two-minute flyover by AprizeSat

Comparison of AIS Messages from Seattle Harbor

pertvision

Port Vision - 83 unique ships

16 same; 15 new

Space Quest

SpaceQuest - 31 unique ships

31/83 = 37.4%

Satellite AIS Augments Terrestrial Data

Norwegian Terrestrial System Vs. Aprize Satellite

Satellite AIS receivers fill in the coverage gaps of terrestrial receivers.

Terrestrial Readings

Norwegian AIS Data - Courtesy of Bjorn Narheim

AprizeSat Readings

SpaceQuest AIS Capability

- Two satellites in orbit with advanced AIS payloads
- One flight-ready AIS satellite test bed for software development
- Space-qualified AIS payload technology
- Operational remote ground station equipment & software
- AIS signal processing algorithm & software implementation
- ITU frequency allocation in 400 MHz band
- National spectrum license issued by Industry Canada
- Partners with antennas suitable for downloading AIS Data
- Export license to launch 10 more satellites from Russian
- Preferred access to future Kosmotras Dnepr cluster launches
- Experience with low-cost satellite construction, launch & operation

Summary

- SQ completed the construction and launch of two AIS satellites in 10-months.
- AIS data collection was activated on the second orbit following separation.
- AprizeSat-3 and 4 are providing high-fidelity AIS signals and packets worldwide.
- Data quality and density appear suitable for commercial & government use.
- Hourly updates are possible with daily 9-hour gaps in coverage.
- The next two AIS satellites will reduce coverage gaps to 4-hours.
- SpaceQuest's AIS payload performance can be significantly improved.

Some Conclusions

- Effective AIS payloads and satellites can be constructed and launched quickly and affordably.
- AIS data collected from space complements shore-based receivers.
- In spite of the numerous collisions it is possible to recover a significant number of AIS messages in real-time from space.
- Multiple ground stations strategically located can download all global AIS packets at data rates of 38.8 Kbps or less.

Next Steps

- Enhance satellite AIS data processing to eliminate duplicate records, compress files and encrypt data.
- Set up automated AIS data collection, downloading and distribution.
- Construct and launch two more AIS satellites to reduce the gaps in hourly updates.

Thank You!

- Kosmotras Successful launch on Dnepr vehicle
- Peter Wilhelm- Use of NRL Blossom Point S-Band Antenna
- Bjorn Narheim Data from land-based AIS receivers
- Kurt Schwehr AIS Animation
- Dean Rosenberg Port Vision data for comparison
- Google Earth